Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Li-Min Yang and Zhao-Jie Liu*

Key Laboratory of Pesticide and Chemical Biology of the Education Ministry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
zhjliu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.082$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Methyl-3,8-diphenyl-5H-pyrazolo[3,4-e]-[1,2,4]triazolo[4,3-b][1,3,4]thiadiazepine

The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$, is nonplanar and possesses no crystallographic symmetry. A $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bond is observed.

Comment

The title compound, (I), belongs to the class of MRE (the most representative adenosine receptor antagonists) analogues, which have given one of the best results to date in terms of $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} antagonistic affinity and selectivity (Baraldi et al., 1999; Baraldi \& Borea, 2000), and it is thus of potential biological interest. The present structure determination of (I) was carried out in order to obtain further stereochemical information on the molecule.

(I)

In the molecule of (I) (Fig.1), the bond distances show some unexpected values (Table 1), which are not consistent with classically localized bond-valence forms. In particular, the $\mathrm{C} 9=\mathrm{N} 4$ and $\mathrm{C} 12=\mathrm{N} 6$ bonds, which are both formally double bonds, are not of equal length. In addition, the $\mathrm{N} 1-\mathrm{N} 2$, $\mathrm{N} 3-$ N 4 and $\mathrm{N} 5-\mathrm{N} 6$ bonds are expected to be shorter than the $\mathrm{C}-$ N single bonds, $\mathrm{C} 1-\mathrm{N} 3, \mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 11-\mathrm{N} 5$. In fact, none of the former three is shorter than any of the latter three. On the other hand, they are all shorter than the $\mathrm{C} 12-\mathrm{C} 10$ bond in the ring system. The bond distances in the $\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 1$ fragment are normal for their types. These two $\mathrm{C}-\mathrm{S}$ bonds have effectively identical lengths, which are in the normal range.

The pyrazole and triazole rings are not coplanar, but make an angle of $50.1(2)^{\circ}$ with each other, while the sevenmembered ring adopts a half-chair conformation, with atoms S and N4 out of the plane of the C atoms. In order to reduce steric hindrance with the central ring systems, the phenyl ring C3-C8 makes a dihedral angle of 24.8 (2) ${ }^{\circ}$ with the triazole ring and the phenyl ring C14-C19 makes an angle of 42.4 (2) ${ }^{\circ}$ with the pyrazole ring; they are thus not conjugated with these heterocyclic rings.

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing of (I), viewed along the b axis. Dashed lines indicate hydrogen bonds.

The molecules in the crystal structure of (I) are interconnected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2). Details of the intermolecular and intramolecular hydrogen-bonding interactions are given in Table 2.

Experimental

For the synthesis of (I), a solution of 5-chloro-3-methyl-1-phenyl-pyrazol-4-yl carboxaldehyde ($0.44 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-amino-5-phenyl-

4-thio-1,2,4-triazole ($0.39 \mathrm{~g}, 2 \mathrm{mmol}$) in ethanol was stirred under reflux for 5 h . After removal of the solvent under reduced pressure, recrystallization of the residue from ethanol gave the Schiff base. In the next step, $\mathrm{NaH}(0.024 \mathrm{~g}, 1 \mathrm{mmol})$ in dry dimethylformamide $(6 \mathrm{ml})$ was placed in a 100 ml nitrogen-flushed three-necked roundbottomed flask in an ice-water bath. After 30 min , a solution of the Schiff base ($0.42 \mathrm{~g}, 1 \mathrm{mmol}$) in dry dimethylformamide (10 ml) was added dropwise and the solution was stirred for 6 h under N_{2} at 353 K. After completion of the reaction, the solution was poured over ice-water to give the crude product. Suitable crystals of (I) for singlecrystal X-ray diffraction were obtained by evaporation of a solution in ethyl acetate.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$
$M_{r}=358.42$
Orthorhombic, Pna ${ }_{1}$
$a=10.083$ (4) \AA
$b=12.576$ (4) \AA
$c=13.849$ (5) \AA
$V=1756.1$ (10) \AA^{3}
$Z=4$
$D_{x}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.919, T_{\max }=0.961$
9699 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.082$
$S=1.03$
2950 reflections
236 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0321 P)^{2}\right. \\
& +0.2938 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1075 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.05 \text { (9) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

S1-C1	$1.737(3)$	N4-C9	$1.277(3)$
S1-C11	$1.740(3)$	N5-N6	$1.369(3)$
N1-C1	$1.306(4)$	N5-C11	$1.351(3)$
N1-N2	$1.379(3)$	N5-C14	$1.418(3)$
N2-C2	$1.314(3)$	N6-C12	$1.326(4)$
N3-C2	$1.369(3)$	C2-C3	$1.463(4)$
N3-C1	$1.369(3)$	C9-C10	$1.443(4)$
N3-N4	$1.400(3)$	C10-C12	$1.414(4)$
C1-S1-C11	$97.68(12)$	N3-C1-S1	$127.3(2)$
C9-N4-N3	$117.5(2)$	N4-C9-C10	$132.7(3)$
C11-N5-N6	$111.4(2)$	C11-C10-C 9	$128.0(3)$
C12-N6-N5	$105.5(2)$	C10-C11-S1	$127.7(2)$
N2-N1-C1-S1	$-172.02(17)$	C9-C10-C11-N5	$173.0(3)$
C2-N3-C1-N1	$-0.9(3)$	C9-C10-C11-S1	$-6.6(4)$
N4-N3-C1-N1	$-175.0(2)$	C11-C10-C12-C13	$-176.7(3)$

organic papers

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2$	0.93	2.54	$2.856(4)$	100
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N} 4$	0.93	2.42	$2.949(4)$	116
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N} \mathrm{~N}^{\mathrm{i}}$	0.93	2.47	$3.379(4)$	166
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~S} 1$	0.93	2.73	$3.180(3)$	111

Symmetry code: (i) $-x+1,-y+2, z+\frac{1}{2}$.

H atoms were positioned geometrically and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (1.5 for methyl H atoms) times $U_{\text {eq }}$ of their carrier atoms, and $\mathrm{C}-\mathrm{H}$ distances were set at $0.96 \AA$ for the methyl H atoms and $0.93 \AA$ for those of the other groups.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Siemens, 1995); software used to prepare material for publication: SHELXTL-NT.

References

Baraldi, P. G. \& Borea, P. A. (2000). Trends Pharmacol. Sci. 21, 456-459. Baraldi, P. G., Cacciari, B. \& Romagnoli, R. (1999). J. Med. Chem. 42, 44734478.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Siemens (1995). SMART (Version 5.0), SAINT (Version 5.0) and SHELXTL$N T$ (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

